
ISSN 2590-9770

The Art of Discrete and Applied Mathematics 3 (2020) #P2.06
https://doi.org/10.26493/2590-9770.1302.f4e

(Also available at http://adam-journal.eu)

On 2-skeleta of hypercubes

Paul C. Kainen
Georgetown University, Department of Mathematics and Statistics,

Washington, DC 20057, USA

Received 5 November 2018, accepted 30 April 2019, published online 10 August 2020

Abstract

It is shown that the 2-skeleton of the odd-d-dimensional hypercube can be decomposed
into sd spheres and τd tori, where sd = (d − 1)2d−4 and τd is asymptotically in the range
(64/9)2d−7 to (d− 1)(d− 3)2d−7.
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1 Introduction
A decomposition of a graph is an edge-disjoint family of subgraphs such that each edge of
the graph is in exactly one of the subgraphs. In recent decades, research on decomposition
of graphs into cycles of varying lengths has been carried out for various graphs, including
hypercubes.

The symbol “×” denotes Cartesian product of topological spaces.
It is natural to try to extend decomposition (and other frameworks) from graphs to 2-

complexes. We do that for the 2-skeleton of the d-dimensional hypercube: the 2-complex
Q2

d obtained from the d-dimensional hypercube graph Qd by attaching a topological 2-cell
[0, 1] × [0, 1] to each Q2-subgraph of Qd in the natural way, and the decompositions are
into spheres and tori.

A necessary condition to decompose a 2-complex into surfaces is that the complex
be even: each edge belongs to a positive even number of 2-cells. But the condition isn’t
sufficient; e.g., a surface can intersect itself like the Klein bottle in 3-space. Note Q2

d is
even iff d ≥ 3 is odd.

The next section contains definitions, a precise statement of the results, and the proofs.
The paper concludes with a brief discussion.

E-mail address: kainen@georgetown.edu (Paul C. Kainen)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8035-0745


2 Art Discrete Appl. Math. 3 (2020) #P2.06

2 Definitions, theorems, and proofs
In this section, we define complexes in a more general sense and give a product K�L of
2-complexes (analogous to the Cartesian product of graphs).

A 2-cell is any space homeomorphic to the standard unit disk in the plane. A 2-complex
is a graph together with a non-empty family of closed 2-cells which are attached by homeo-
morphisms from their boundaries to some of the cycles in the graph. The degree of an edge
is the number of 2-cells which contain it; a complex is even iff all its edges have positive
even degree.

If K is a complex, we write K(r) for the set of r-cells, 0 ≤ r ≤ 2, where the vertices
and edges, resp., are the 0- and 1-cells. The box-product of two 2-complexes K and L is
the 2-complexM := K�L, where for k = 0, 1, 2

Y ∈M(k) ⇐⇒ Y = A×B, A ∈ K(i), B ∈ L(j), i+ j = k; (2.1)

we call Y of type (i, j) in this case. It is easy to check that for all d ≥ 2,

Q2
d = Q2

d−2 �Q2
2. (2.2)

E.g., the 2-cells of Q2
4 = Q2

2 �Q2
2 consist of four of type (0, 2), four of type (2, 0), and 16

of type (1, 1). The box product of even complexes is even.
A decomposition of a 2-complex K is a set of 2-complexes whose union is K such that

every 2-cell in K is in exactly one of the components.
An r-factor of a graph is a spanning r-regular subgraph and a factorization of a graph

G is an edge-disjoint family of factors whose union is G. The following result is due to
El-Zanati and Vanden Eynden [3, Theorem 7].

Theorem A. A Let d ≥ 3 be odd and suppose 2 ≤ r ≤ d. Then there is a 1-factor F of
Qd such that Qd − F has a factorization into s-cycles with s = 2r.

A complex is a sphere or torus if it is homeomorphic to a sphere or torus. If a complex
is isomorphic to K, we call it a K-complex.

Theorem 2.1. For d odd ≥ 5, Q2
d has a decomposition into sd spheres and td tori, where

the spheres are Q2
3, each torus is C4 × C` for some ` = 2r, r odd, 3 ≤ r ≤ d− 2, and

sd = (d− 1)2d−4 and td =
(
2d−1 − (3/2)(d−3)− 4

)
/9. (2.3)

Theorem 2.2. For d odd ≥ 5, Q2
d has a decomposition into sd spheres and Td tori, where

each sphere equals ∂Q3, each torus is C4 × C4, and

Td = (d− 1)(d− 3)2d−7. (2.4)

For d = 5, 7, 9, sd = 8, 48, 256, td = 1, 6, 27, and Td = 2, 24, 192, respectively.

Proof of Theorem 2.1. By Theorem A, with r = d − 2, Qd−2 can be factored into Hamil-
tonian cycles and a 1-factor F . We proceed by induction.

For the basis case d = 5, by equation (2.2), Q2
5 = Q2

3 �Q2
2 As Q2

3 is a sphere, the
union of all 2-cells of type (2, 0) in Q2

5 is a set of four disjoint spheres. If F is the 1-factor
in Q3, then F � ∂(Q2

2), is the union of four disjoint cylinders formed by 16 2-cells of type
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(1, 1), while there are eight 2-cells of type (0, 2) which constitute the tops and bottoms of
the cylinders, giving a total of 8 spheres in the decomposition of Q2

5. Finally, if H is the
Hamiltonian cycle inQ3−F , then the 2-cells inH � ∂(Q2

2), each of type (1, 1), determine
a torus of the form C4 × C8. Thus, s5 = 8 and t5 = 1.

Noting that s3 = 1, for the induction step, we again use equation (2.2) and the above
argument to see that for d ≥ 5, sd = 4sd−2 + 2d−3 and it is straightforward to check that
sd = (d− 1)2d−4 satisfies the recursion. Indeed, for d ≥ 5

4(d− 3)2d−6 + 2 · 2d−4 = (d− 1)2d−4.

Similarly, as (d−3)/2 is the number of Hamiltonian cycles in the factorization ofQd−2−F ,
we find that td = 4td−2 + (d− 3)/2, and for d odd ≥ 5, one easily checks that

4
(
2d−3 − (3/2)(d− 5)− 4

)
/9 + (d− 3)/2 =

(
2d−1 − (3/2)(d− 3)− 4

)
/9,

which proves the theorem as the recursively added tori are of the form C4 × C`, for ` the
number of vertices in odd hypercubes of dimensions < d.

For instance, writing Tk for Ck × C4, the 6 tori for Q2
7 are 4 copies of T8 and 2 copies

of T32. For Q2
9, there are 16 copies of T8, 8 of T32, and 3 of T128.

Using Theorem A with r = 2, one proves Theorem 2.2.

3 Conclusion
The decomposition of the odd-dimensional hypercube 2-complex into spheres and tori is
an example of decomposing an even complex into surfaces, as proposed in [4]. We believe
that similar decompositions are possible for even 2-complexes related to complete graphs
(i.e., the simplex).

Decomposition into surfaces may allow improved display for graphs and 2-complexes
embeddable in hypercubes. For instance, embedding the graph Qd in a surface requires
genus 1+ (d− 4)2d−3 (e.g., [5, p. 119]) and such an embedding does not include all of the
2-complex. In contrast, a set of spheres and tori with 1-dimensional intersections suffice
for the complex.

The problem of finding such representations has been considered by L. De Floriani
and colleagues in a series of papers, e.g., [1, 2]. Two types of singularities 0-dimensional
(“pinch points”) and 1-dimensional (where several disks share a common line) are shown
in Figures 3 and 1, respectively, of [1]. Their work, however, concentrates on simplicial
complexes, rather than the cubical complexes considered here, and they don’t consider the
issue of topological complexity.

Our hypercube decompositions, which are face-disjoint unions of spheres and tori, are
examples of generalized books in the sense of Overbay [6, 7].

If decompositions include surfaces with boundary, then every 2-complex has a decom-
position. Indeed, ifK is a 2-complex, then take a genus embedding of the underlying graph,
and put each 2-cell, not corresponding to a region of the embedding, onto a separate disk.

That Q2
d (d ≥ 5 odd) is decomposable into closed surfaces follows from Euler’s theo-

rem using induction as above. Indeed, removing any 1-factor from Qd−2 leaves a (d− 3)-
regular graph, which must be decomposable into cycles. Using [3] instead gives the least
and greatest numbers of tori.
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